资源类型

期刊论文 338

会议视频 9

年份

2023 24

2022 37

2021 37

2020 38

2019 13

2018 13

2017 12

2016 16

2015 18

2014 14

2013 9

2012 32

2011 14

2010 16

2009 12

2008 8

2007 8

2006 3

2005 4

2004 2

展开 ︾

关键词

DX桩 15

承载力 8

沉降 7

环境 5

农业科学 4

人工神经网络 2

冲刷防护 2

土壤 2

基质吸力 2

微波遥感 2

抗生素 2

数值分析 2

桩基础 2

海上风电场 2

膨胀土 2

重金属 2

风化砂 2

CRD法 1

DX群桩 1

展开 ︾

检索范围:

排序: 展示方式:

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

《结构与土木工程前沿(英文)》   页码 915-934 doi: 10.1007/s11709-023-0907-8

摘要: A fictitious soil pile (FSP) model is developed to simulate the behavior of pipe piles with soil plugs undergoing high-strain dynamic impact loading. The developed model simulates the base soil with a fictitious hollow pile fully filled with a soil plug extending at a cone angle from the pile toe to the bedrock. The friction on the outside and inside of the pile walls is distinguished using different shaft models, and the propagation of stress waves in the base soil and soil plug is considered. The motions of the pile−soil system are solved by discretizing them into spring-mass model based on the finite difference method. Comparisons of the predictions of the proposed model and conventional numerical models, as well as measurements for pipe piles in field tests subjected to impact loading, validate the accuracy of the proposed model. A parametric analysis is conducted to illustrate the influence of the model parameters on the pile dynamic response. Finally, the effective length of the FSP is proposed to approximate the affected soil zone below the pipe pile toe, and some guidance is provided for the selection of the model parameters.

关键词: fictitious soil pile     soil plug     pipe piles     high-strain dynamic analysis     one-dimensional wave theory     pile dynamics    

Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations

Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 62-81 doi: 10.1007/s11709-019-0570-2

摘要: This article describes a novel approach for deciding optimal horizontal extent of soil domain to be used for finite element based numerical dynamic soil structure interaction (SSI) studies. SSI model for a 12 storied building frame, supported on pile foundation-soil system, is developed in the finite element based software framework, OpenSEES. Three different structure-foundation configurations are analyzed under different ground motion characteristics. Lateral extent of soil domain, along with the soil properties, were varied exhaustively for a particular structural configuration. Based on the reduction in the variation of acceleration response at different locations in the SSI system (quantified by normalized root mean square error, ), the optimum lateral extent of the soil domain is prescribed for various structural widths, soil types and peak ground acceleration levels of ground motion. Compared to the past studies, error estimation analysis shows that the relationships prescribed in the present study are credible and more inclusive of the various factors that influence SSI. These relationships can be readily applied for deciding upon the lateral extent of the soil domain for conducting precise SSI analysis with reduced computational time.

关键词: soil structure interaction     optimum lateral extent of soil domain length     multi-storyed framed building     pile foundation     OpenSEES     L-K boundaries     dynamic analysis    

Finite element prediction on the response of non-uniformly arranged pile groups considering progressivefailure of pile-soil system

Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 961-982 doi: 10.1007/s11709-020-0632-5

摘要: A uniform arrangement of individual piles is commonly adopted in the conventional pile group foundation, and basin-shaped settlement is often observed in practice. Large differential settlement of pile groups will decrease the use-safety requirements of building, even cause the whole-building tilt or collapse. To reduce differential settlement among individual piles, non-uniformly arranged pile groups can be adopted. This paper presents a finite element analysis on the response of pile groups with different layouts of individual piles in pile groups. Using the user-defined subroutine FRIC as the secondary development platform, a softening model of skin friction and a hyperbolic model of end resistance are introduced into the contact pair calculation of ABAQUS software. As to the response analysis of a single pile, the reliability of the proposed secondary development method of ABAQUS software is verified using an iterative computer program. The reinforcing effects of individual piles is then analyzed using the present finite element analysis. Furthermore, the response of non-uniformly arranged pile groups, e.g., individual piles with variable length and individual piles with variable diameter, is analyzed using the proposed numerical analysis method. Some suggestions on the layout of individual piles are proposed to reduce differential settlement and make full use of the bearing capacity of individual piles in pile groups for practical purposes.

关键词: numerical simulation     non-uniformly arranged pile groups     differential settlement     pile-soil interaction    

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 103-111 doi: 10.1007/s11709-015-0328-4

摘要: The numerical analysis of pile-soil interaction commonly requires a lot of trial works to determine the interface parameters and the accuracy cannot be ensured normally. Considering this, this paper first conducts a sensitivity analysis to figure out the influence of interface parameters on the bearing behavior of a single pile in sand. Then, a simplified method for the determination of pile-soil interface parameters in layered soil is proposed based on the parameter studies. Finally, a filed loading test is used for the validation of the simplified method, and the calculated results agree well with the monitoring data. In general, the simplified method proposed in this paper works with higher accuracy and consumes less time compared with the traditional trial works, especially on the determinations of interfacial cohesive and interfacial friction angle.

关键词: determination of interface parameters     pile-soil interaction     FLAC3D     sensitivity analysis     layered soil    

Shaking table testing of hard layered soil-pile-structure interaction system

LI Peizhen, REN Hongmei, LU Xilin, SONG Heping, CHEN Yueqing

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 346-352 doi: 10.1007/s11709-007-0046-7

摘要: Shaking table tests on a dynamic interaction system of hard layered soil, pile foundation and frame structure were carried out. The earthquake damage of the superstructure and foundation was reproduced. Based on these tests, several key issues about the seismic response of the dynamic soil-structure interaction (SSI) system were studied. The natural frequency of the system was less than that of the structure on rigid foundation if the SSI is not taken into account, while its damping ratio was larger than that of the structure. The mode shape of the system was different from that of the structure on the fixed base in that there were rocking and swinging at the foundation. Magnification or reduction of vibration transferred by soil was related to soil characteristic, excitation magnitude, and so on. Generally, sand magnifies vibration, while viscous powder soil dampens vibration. The components of the acceleration response at the top of the superstructure were based on the relative magnitude of the rocking stiffness, the swing stiffness of the foundation and the stiffness of the super-structure. The multi-direction excitations have little effect on the key issues of the horizontal SSI.

关键词: super-structure     Generally     Magnification     frequency     different    

Numerical evaluation of group-pile foundation subjected to cyclic horizontal load

Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG,

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 196-207 doi: 10.1007/s11709-010-0021-6

摘要: In this paper, three-dimensional (3D) finite element analyses of a real-scale group-pile foundation subjected to horizontal cyclic loading are conducted using a program named DBLEAVES. In the simulations, nonlinear behaviors of ground and piles are described by subloading model and the axial-force dependent model (AFD model) which considered the axial-force dependency in the nonlinear moment-curvature relations. In order to consider the influence of an effective stress path on the prediction of the group-pile foundation, the analyses are conducted within the framework of the soil-water coupling method with finite-difference and finite-element regime. The material parameters of soils are determined based on conventional triaxial drained compression tests on undisturbed and remolded specimens. The applicability of the proposed numerical method is encouraging, and therefore, it is quite confident to say that the method can be used to predict the mechanical behaviors of group-pile foundation to a satisfactory accuracy, particularly with the effective stress analysis.

关键词: group-pile foundation     real-scale cyclic loading test     three-dimensional finite element method (3D-FEM)     soil-water coupling analysis     undisturbed and remolded specimens    

DX桩桩周土应力场分布的模型试验研究

唐松涛,陈立宏,袁希雨

《中国工程科学》 2012年 第14卷 第1期   页码 105-112

摘要:

通过室内小比尺的模型试验,可以进一步为确定DX桩沉降计算公式提供必要的依据。在小型模型试验箱中,通过采用杠杆加砝码的装置对22 mm桩径的DX桩在砂土中进行研究,测定单桩的桩顶荷载-桩顶位移曲线,确定承载力,并与相同情况下的直孔桩进行对比;同时,利用微型土压力盒测定土中应力变化,研究荷载在土中的传递规律。试验结果表明,DX桩的承载力及沉降特性明显优于直孔桩;承力盘在上部和下部时,DX桩尽管承载力相差不大,但是盘在下部时会增大桩端附近土体的应力;两个承力盘的DX桩,两盘受力比较一致,且盘受力的影响范围,在竖

关键词: DX桩     土压力盒     应力量测    

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

《结构与土木工程前沿(英文)》   页码 1021-1032 doi: 10.1007/s11709-023-0952-3

摘要: In recent years, concrete and reinforced concrete piles have been widely used to stabilize soft ground under embankments. Previous research has shown that bending failure, particularly during rapid filling on soft ground, is the critical failure mode for pile-supported embankments. Here, we propose an efficient two-stage method that combines a test-verified soil deformation mechanism and Poulos’ solution for pile–soil interaction to investigate the bending behavior of piles supporting embankments on soft ground. The results reveal that there are three possible bending failure scenarios for such piles: at the interface between the soft and firm ground layers, at mid-depths of the fan zone, and at the boundary of the soil deformation mechanism. The location of the bending failure depends on the position and relative stiffness of the given pile. Furthermore, the effect of embedding a pile into a firm ground layer on the bending behavior was investigated. When the embedded length of a pile exceeded a critical value, the bending moment at the interface between the soft and firm ground layers reached a limiting value. In addition, floating piles that are not embedded exhibit an overturning pattern of movement in the soft ground layer, and a potential failure is located in the upper part of these piles.

关键词: bending behavior     pile     embankment     soil−structure interaction     failure mode    

Design and analyses of open-ended pipe piles in cohesionless soils

Yuan GUO,Xiong (Bill) YU

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 22-29 doi: 10.1007/s11709-016-0314-5

摘要: Large open-ended pipe pile has been found to be advantageous for use in transportation projects. The current design method, however, is not adequately developed. To close this practice gap, this paper first summarized different design methods for open-ended pipe piles in sandy soils. A major factor for all the design codes is to properly account for the formation and effects of soil plug. The comparison indicates that there is a large variation in the base capacity evaluation among different methods due to the complex behaviors of soil plug. To close the knowledge gap, discrete element method (DEM) was used to simulate the soil plugging process and provide insight on the plugging mechanism. The simulation results show that the arching effect significantly increases the internal unit shear resistance along pipe piles. The porosity distribution and particle contact force distribution from DEM model indicate a large stress concentration occurs at the bottom of the soil plug. Besides, nearly 90% of the plug resistance is provided by the bottom half portion of the soil column. The soil-pile friction coefficient has a significant effect on the magnitude of plug resistance, with the major transition occurred for friction coefficient between 0.3 and 0.4.

关键词: open-ended pipe pile     soil plug     DEM     base capacity    

混凝土裂缝端部粘聚力的计算

徐世烺,王利民

《中国工程科学》 2002年 第4卷 第5期   页码 53-58

摘要:

混凝土裂缝端部断裂过程区的粘聚力分布是导致混凝土断裂呈现非线性特性的重要原因。基于混凝土的断裂特性和虚拟裂缝端部存在粘聚力的分析模型,并通过分布函数的特性分析,提出了粘聚力分布函数的两种简化表达式:一为单参数待定式,另一为双参数待定式。由变形体叠加原理,推导出计算单参数待定函数公式和计算双参数待定函数代数方程组。进而通过裂缝张开位移实测数据即可求得粘聚力分布,并且给出了适当的算例分析和讨论。

关键词: 混凝土     裂缝张开位移     虚拟裂缝粘聚力     代数方程    

DX桩群桩承载性状的数值分析

张清林,陈立宏

《中国工程科学》 2012年 第14卷 第1期   页码 51-59

摘要:

通过数值计算对不同桩间距的DX桩群桩进行了分析研究。结果表明:DX桩的群桩效应随着桩间距的减小而逐渐明显,间距为6倍桩径的群桩极限承载力是间距为3倍桩径的群桩极限承载力的1.32倍;群桩间距由3倍桩径增大为6倍桩径时,群桩效应系数由0.59增大为0.78;群桩间土体沉降的最大值发生在两扩盘中间位置处,且随着桩间距的增大而减小。

关键词: DX桩     群桩     沉降     数值分析    

Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil

Jasim M. ABBASA,Zamri CHIK,Mohd Raihan TAHA

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 176-193 doi: 10.1007/s11709-015-0289-7

摘要: The lateral response of single and group of piles under simultaneous vertical and lateral loads has been analyzed using a 3D finite element approach. The response in this assessment considered lateral pile displacement and lateral soil resistance and corresponding - curve. As a result, modified - curves for lateral single pile response were improved with respect to the influence of increasing axial load intensities. The improved plots can be used for lateral loaded pile design and to produce the group action design -multiplier curves and equations. The effect of load combination on the lateral pile group response was performed on three pile group configurations (i.e., 2×1, 2×2 and 3×2) with four pile spacings (i.e., = 2 , 4 , 6 and 8 ). As a result, design curves were developed and applied on the actual case studies and similar expected cases for assessment of pile group behavior using improved p-multiplier. A design equation was derived from predicted design curves to be used in the evaluation of the lateral pile group action taking into account the effect of axial load intensities. It was found that the group interaction effect led to reduced lateral resistance for the pile in the group relative to that for the single pile in case of pure lateral load. While, in case of simultaneous combined loads, large axial load intensities (i.e., more than 6 , where is lateral load values) will have an increase in -multiplier by approximately 100% and will consequently contribute to greater group piles capacities.

关键词: piles     pile group     spacing     configuration     combined load    

DX桩单桩沉降分析

唐松涛,袁希雨,陈立宏

《中国工程科学》 2012年 第14卷 第1期   页码 41-45

摘要:

DX桩作为变截面桩型的典型代表,具有与普通直孔灌注桩不同的荷载传递机理,使桩基的承载力大大提高,沉降变形显著减小。多点支承的特点使得DX桩的沉降机理变得十分复杂,计算分析困难。通过对DX单桩沉降的实例分析,对DX桩与直孔桩的沉降特性进行对比,验证了设计规程中DX桩的沉降计算公式和修正系数的可靠性。

关键词: DX桩     直孔桩     沉降     修正系数    

Application of fuzzy analytic hierarchy process model on determination of optimized pile-type

Lei MA, Shuilong SHEN, Jinhui ZHANG, Yang HUANG, Feng SHI

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 252-257 doi: 10.1007/s11709-010-0017-2

摘要: Pile-type selection is a very important stage of foundation design, and there are many field factors influencing the decision of pile-type selection. Since there is a limitation of traditional “major factors method” to satisfy the requirement of modern foundation construction, this study presents an efficient approach, in which analytic hierarchy process (AHP) is employed. AHP is a multiple criteria decision-making tool that has been applied in many fields related to the decision-making, e.g., in the field of economics, marketing, sociology, etc. However, it is rarely reported that AHP is applied in the field of civil engineering for decision making. In this study, AHP combined with fuzzy synthetic evaluation method is employed to select the type of pile used as the foundation of a residential building in Fuzhou, Fujian Province, China. The results show that fuzzy AHP approach is an easy and efficient way for pile-type selection.

关键词: pile type     fuzzy synthetic evaluation     analytic hierarchy process (AHP)     optimal selection    

Comparison of shallow tunneling method with pile and rib method for construction of subway station in

Sina AMIRI; Ali Naghi DEHGHAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 704-717 doi: 10.1007/s11709-021-0746-4

摘要: In the present study, a comparison between the new shallow tunneling method (STM) and the traditional pile and rib method (PRM) was conducted to excavate and construct subway stations in the geological conditions of Tehran. First, by selecting Station Z6 located in the Tehran Subway Line 6 as a case study, the construction process was analyzed by PRM. The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis, and it was within the allowable settlement limit of 30 mm. The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM. In the next stage, based on the numerical model validated by instrumentation data, the value of the ground surface settlement was investigated during the station excavation and construction by STM. The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM. The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face. Also, the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM, it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction.

关键词: shallow tunneling method     pile and rib method     ground surface settlement     subway station construction     numerical modeling    

标题 作者 时间 类型 操作

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

期刊论文

Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations

Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY

期刊论文

Finite element prediction on the response of non-uniformly arranged pile groups considering progressivefailure of pile-soil system

Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI

期刊论文

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

期刊论文

Shaking table testing of hard layered soil-pile-structure interaction system

LI Peizhen, REN Hongmei, LU Xilin, SONG Heping, CHEN Yueqing

期刊论文

Numerical evaluation of group-pile foundation subjected to cyclic horizontal load

Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG,

期刊论文

DX桩桩周土应力场分布的模型试验研究

唐松涛,陈立宏,袁希雨

期刊论文

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

期刊论文

Design and analyses of open-ended pipe piles in cohesionless soils

Yuan GUO,Xiong (Bill) YU

期刊论文

混凝土裂缝端部粘聚力的计算

徐世烺,王利民

期刊论文

DX桩群桩承载性状的数值分析

张清林,陈立宏

期刊论文

Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil

Jasim M. ABBASA,Zamri CHIK,Mohd Raihan TAHA

期刊论文

DX桩单桩沉降分析

唐松涛,袁希雨,陈立宏

期刊论文

Application of fuzzy analytic hierarchy process model on determination of optimized pile-type

Lei MA, Shuilong SHEN, Jinhui ZHANG, Yang HUANG, Feng SHI

期刊论文

Comparison of shallow tunneling method with pile and rib method for construction of subway station in

Sina AMIRI; Ali Naghi DEHGHAN

期刊论文